EFFECTS OF DOPING ON THE THERMAL STABILITY OF SPINDLE-SHAPED γ -Fe₂O₃ PARTICLES

Hongmei Luo and Huanxing Zeng

Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Auhui, 230026, P. R. China

Abstract

Spindle-shaped α -FeOOH particles were synthesized using the chemical coprecipitation method in Fe(CO₃)_x(OH)_{2(-x)} suspensions system by adding metallic ions. The spindle-shaped γ -Fe₂O₃ particles were obtained by dehydration of α -FeOOH, and subsequent reduction and oxidation. Its thermal stability was investigated by differential thermal analysis (DTA). It was found that the transition temperature of γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ of samples doped with metallic ions is higher than that of the pure γ -Fe₂O₃ and increasing with increase of the size of the metallic ions, and γ -Fe₂O₃ by doping with two or more different metallic ions together has even higher thermal stability. The origin of the improved thermal stability was discussed. Additionally, the magnetic properties of γ -Fe₂O₃ were measured.

Keywords: DTA, γ -Fe₂O₃, thermal stability, spindle-shaped

Introduction

 γ -Fe₂O₃ is still the most useful among the oxides employed as particular recording media. It plays an important role today in computer tapes, digital audio recording tapes, and also in flexible and rigid disks [1, 2]. The conventional synthesis processes for γ -Fe₂O₃ usually begin with the nucleation and growth of FeOOH particles, then followed by dehydration to form α -Fe₂O₃, reduction to Fe₃O₄ and then oxidation to form γ -Fe₂O₃ [3, 4]. Magnetic γ -Fe₂O₃ particles can be converted into nonmagnetic α -Fe₂O₃ particles at higher temperatures [5].

As we know, α -Fe₂O₃ phase is a stable phase, and γ -Fe₂O₃ will be definitely converted into α -Fe₂O₃ in the range of 370–650°C. The methods of preparing particles, the size and shape of particles, the perfectness of crystallization, the variety and amount of additives and so on, are responsible for the temperature of phase transformation of γ -Fe₂O₃ into α -Fe₂O₃ [6]. The improved thermal stability has the advantage that the temperature for the oxidation of Fe₃O₄ particles and the phase transition temperature of γ -Fe₂O₃ particles can be considerably increased without the risk of forming nonmagnetic α -Fe₂O₃ particles. It is the object of this research to find the influence of different additives on the thermal stability of spindle-shaped γ -Fe₂O₃. In this paper, a series of spindle-shaped γ -Fe₂O₃ particles were obtained by adding different metallic ion respectively to the system of FeSO₄-Na₂CO₃ to produce geothite (the concentration, *pH*, temperature, time, air flow rate and the amount of metallic ion were controlled) followed by dehydration, reduction, and oxidation. The thermal stability and magnetic properties of γ -Fe₂O₃ particles were determined by means of DTA and magnetometer respectively. The present procedure of preparing γ -Fe₂O₃ particles benefits for their thermal stability, especially the precursor for γ -Fe₂O₃ contains metallic ions. Furthermore, with increase of the size of metallic ion, the transition temperature of γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ is increased.

Experimental

Materials

The spindle-shaped α -FeOOH particles were produced by air oxidizing Fe(CO₃)_x(OH)_{2(1-x)} suspension formed in the solution of FeSO₄ and Na₂CO₃. The reaction was under the following condition: [Fe²⁺] 0.2 *M*, [(CO₃)²⁻] 0.4 *M*, adding Zn²⁺, Ni²⁺, Co²⁺, La³⁺, Y³⁺ and so on respectively, to the suspensions (*M*/Fe 4 mol%), *pH* 8-10, 50-60°C, 8 h, air flow rate 0.3 -0.5 l/l'min.

The reagents were of analytically pure grade.

The product was washed, filtered, dried and crushed.

 α -FeOOH particles were dehydrated to form α -Fe₂O₃ (at 300-450°C for 45 min, α -Fe₂O₃ was reduced to Fe₃O₄ by hydrogen gas at 350-380°C for 30 min, and then Fe₃O₄ was oxidized by air at 180-200°C for 30 min.

X-ray diffraction (XRD)

Powder X-ray diffraction patterns were recorded with a Japanese Rigaku D/max- γ A rotation anode X-ray diffractometer, using Cu radiator and Ni filter. The phase identification of the resultant power was characterized by XRD.

Electron microscopy

Electron micrographs were obtained with a Hitachi H-800 transmission electron microscope (TEM). TEM was used to observe the size and shape of the powders.

DTA diagrams

The thermal stability was measured by differential thermal analysis (DTA), which was used as a thermal analytical instrument manufactured by a Rigaku, Japan.

Magnetic properties

A vibrating sample magnetometer (VSM) was used to measure the magnetic properties, such as saturation magnetization (σ_s) and coercivity (Hc).

Results and discussion

Thermal stability of samples

In Fig. 1, the electron transmission micrographs of Zn-doped and La-doped γ -Fe₂O₃ particles are shown, indicating their shapes.

Figure 2 shows a series of DTA measurements of the resultant powders. Samples were named respectively: (a) undoped, (b) Zn-doped, (c) Ni-doped, (d) Co-doped, (e) La-doped, (f) Y-doped, (g) Sm, Co-doped. DTA curves were recorded under the following conditions: sample weights 8 -10 mg; heating rate $10 \text{ deg} \cdot \text{min}^{-1}$; static air atmosphere, temperature from 10 to 800° C.

a (×50000)

b (×50000)

Fig. 1 Electron transmission micrographs of Zn-γ-Fe₂O₃ and La-γ-Fe₂O₃ particles; a. Zndoped γ-Fe₂O₃; b. La-doped γ-Fe₂O₃

On the whole, DTA curves of undoped or metal-ion-doped γ -Fe₂O₃ essentially showed two exothermal effects. The first, a gentle, wide exothermal peak appeared at low temperature. On further increasing temperature (about 650-800°C), there appeared a very sharp, marked exothermal peak. We believe, this is the phase transformation of γ -Fe₂O₃ into α -Fe₂O₃. However, at low temperature, the exothermal peak may be probably attributed to the recrystallization of γ -Fe₂O₃ and the exothermal reaction of Fe₃O₄ $\rightarrow \gamma$ -Fe₂O₃. In the oxidation process of Fe₃O₄ to γ -Fe₂O₃, Fe₃O₄ particles were probably partially oxidized to form γ -Fe₂O₃, considering that Fe₃O₄ and γ -Fe₂O₃ belong to the

Fig. 2 DTA curves of undoped and metal-ion doped γ-Fe₂O₃ samples; a. undoped; b. Zndoped; c. Ni-doped; d. Co-doped; e. La-doped; f. Y-doped; g. Sm, Co-doped

spinel structure, so the two phase would easily coexist. Thus, it is reasonable to find that γ -Fe₂O₃ particles contain a small amount of Fe₃O₄ particles. When the sample was heated, Fe₃O₄ would be oxidized continually to form γ -Fe₂O₃ with O₂. Furthermore, some investigators [7] think that the microstructure of γ -Fe₂O₃ contains a fixed amount of 'H'. In the treatment of γ -Fe₂O₃, 'H' would go into the crystal lattice from the surface, stabilizing the γ -Fe₂O₃ phase, and would make Fe₃O₄ $\rightarrow \gamma$ -Fe₂O₃ easily. On increasing temperature, γ -Fe₂O₃ would be definitely converted to α -Fe₂O₃. In order to ascertain the phase transformation, a series of X-ray diffraction patterns of Zn-doped samples obtained at different heat treatment temperature, were carried out, and they are displayed in Fig. 3.

The XRD patterns of samples unheated to 600°C revealed lines belonging exclusively to γ -Fe₂O₃. The phase of the sample calcined at 680°C for 1 h consisted of α -Fe₂O₃ and γ -Fe₂O₃. When sample was calcined at 700°C for 1 h, the γ -Fe₂O₃ phase disappeared, leaving only the α -Fe₂O₃ phase.

Unfortunately, XRD is unable to solve the problem of phase purity, that is to say, a small amount of Fe₃O₄ or other ferric oxide in γ -Fe₂O₃ samples is very difficult to determine directly from XRD.

So we can obtained the following results from DTA and XRD:

(1) The exothermal peak at lower temperature can not be due to the partial transformation of γ -Fe₂O₃ into α -Fe₂O₃;

(2) It is probable for us to ascribe the exothermal effect at low temperature to the recrystallization of γ -Fe₂O₃ and the oxidation reaction of Fe₃O₄ with O₂;

(3) The temperature of γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ is in the range of 650-800°C. One can take advantage of this fact in the preparation process. The oxidation temperature of Fe₃O₄ particles can be considerably raised no risk of forming undesirable nonmagnetic α -Fe₂O₃ particles. For this reason, the oxidation time could be greatly reduced.

Therefore, the transition temperature of γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ of each sample was obtained by DTA curves, with the radius of metallic ion [8] listed in Table 1.

Table 1 Radius of metallic ion and the phase transition temperature of γ -Fe₂O₃ into α -Fe₂O₃ (T_{pt}) of samples

	Δ (Fe)	Zn	Ni	Co	Y	La	Sm, Co
<i>r</i> /pm	75	74	70	72	88	106.1	94.4, 72
$T_{\rm pt}/{}^{\rm o}{\rm C}$	680	700	660	690	725	800	770

The data provide three conclusions: (1) the thermal stability of metal-iondoped γ -Fe₂O₃ is higher than that of undoped, except the Ni-doped sample; (2) the temperature of phase transformation of γ -Fe₂O₃ into α -Fe₂O₃ is increased with the increase of the radius of metallic ion; (3) γ -Fe₂O₃ doped by two or more different metallic ions also has higher thermal stability.

The lower thermal stability of pure γ -Fe₂O₃ (Fe_{8/3} Δ^{1}_{3} O₄) is mainly due to cation vacancies, which cause Fe³⁺ to proliferate easily. However, when doped with metallic ion, the metallic ions may occupy the vacancies partially or go into the crystal lattice, restraining the phase transformation of γ -Fe₂O₃, thus the samples have higher thermal stability.

At present, we have no satisfactory explanation for the proportional relationship of temperature of γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ to the radius of metallic ion. By calculating the lattice parameter from XRD patterns, we could not obtain any further information on this regularity.

Furthermore, γ -Fe₂O₃ doped with two or more metallic ions together has even higher thermal stability. This point is of momentous significance. Practically, we can use different metallic ions together as additives instead of the expensive single metallic ion, with the same effects, possessing economic value.

Magnetic properties of samples

Table 2 shows magnetic properties of samples. Magnetic properties are not as good, mainly due to added mass of additives.

Fig. 3 X-ray powder diffraction patterns of Zn-doped samples; a. unheated; b. 600°C, 1 h; c. 680°C, 1 h; d. 700°C, 1 h

Table 2 Magnetic properties of spindle-shaped doped and undoped y-Fe₂O₃ particles

Dopings	Δ	Zn	Ni	Co	Y	La	(Sm, Co)
H _c /Oe	308	375	311	576	260	400	469
σ_s /emu·g ⁻¹	75.1	70.5	67.0	63.4	65.0	78.4	66.3

Conclusions

The improved thermal stability of spindle-shaped γ -Fe₂O₃ particles has been achieved by doping with metallic ion. By DTA, it was found that the transition temperature of γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ is increased with the increase of the size of metallic ion. Furthermore, spindle-shaped γ -Fe₂O₃ has higher thermal stability when doped with different metal ions. The magnetic properties of γ -Fe₂O₃ probably were not much changed with the variety of metallic ion.

* * *

This work is supported by the Chinese Natural Science Foundation, and is gratefully acknowledged.

References

- 1 D. E. Speliotis, IEEE, Trans. Magn., MAG-20, 5 (1989) 669.
- 2 M. P. Sharrock and R. E. Bodnar, J. Appl. Phys., 57 (1985) 3919.
- 3 Jpn. Kokal Tokyo Koho JP 02 51, 429.
- 4 Zeng Huanxing and Ren Fuming, Chinese J. Inorganic Materials, 7 (1992) 236.
- 5 C. Gustard and W. J. Schuele, J. Appl. Phys., 37 (1966) 1168.
- 6 Zeng Huanxing, Chinese Science Bulleting, 19 (1988) 228.
- 7 Du Youwei, Chinese J. Physics, 35 (1986) 8.
- 8 Cao Xizhang, Inorganic Chemistry, Higher Education Press, China, 1988, p. 456-500.

Zusammenfassung — Mittels chemischer Kopräzipitation in $Fe(CO_3)_x(OH)_{2(x)}$ Suspensionssysteme durch Zusatz von Metallionen wurden spindelförmige α -FeOOH-Partikel hergestellt. Spindelförmige γ -Fe₂O₃-Partikel wurden durch die Dehydratation von α -FeOOH und anschließende Reduktion und Oxidation erhalten. Deren thermische Stabilität wurde mittels DTA untersucht. Man fand, daß die Umwandlungstemperatur von γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ für Proben, die mit Metallionen versetzt wurden, höher ist als die von reinem γ -Fe₂O₃ und mit anwachsender Größe des Metallions zunimmt und daß γ -Fe₂O₃ durch gleichzeitiges Versetzen mit zwei oder noch mehr unterschiedlichen Metallionen eine höhere thermische Stabilität aufweist. Der Ursprung dieser verbesserten thermischen Stabilität wird diskutiert. Zusätzlich wurden die magnetischen Eigenschaften von γ -Fe₂O₃ gemessen.